В чем состоит негативное влияние мультиколлинеарности. Определение мультиколлинеарности. Методы устранения мультиколлинеарности




Ответы на экзаменационные билеты по эконометрике Яковлева Ангелина Витальевна

37. Определение мультиколлинеарности. Последствия мультиколлинеарности. Методы обнаружения мультиколлинеарности

Наибольшие затруднения в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторных переменных, когда более чем два фактора связаны между собой линейной зависимостью.

Мультиколлинеарностью для линейной множественной регрессии называется наличие линейной зависимости между факторными переменными, включёнными в модель.

Мультиколлинеарность – нарушение одного из основных условий, лежащих в основе построения линейной модели множественной регрессии.

Мультиколлинеарность в матричном виде – это зависимость между столбцами матрицы факторных переменных Х :

Если не учитывать единичный вектор, то размерность данной матрицы равна n*n. Если ранг матрицы Х меньше n , то в модели присутствует полная или строгая мультиколлинеарность. Но на практике полная мультиколлинеарность почти не встречается.

Можно сделать вывод, что одной из основных причин присутствия мультиколлинеарности в модели множественной регрессии является плохая матрица факторных переменных Х .

Чем сильнее мультиколлинеарность факторных переменных, тем менее надежной является оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.

Включение в модель мультиколлинеарных факторов нежелательно по нескольким причинам:

1) основная гипотеза о незначимости коэффициентов множественной регрессии может подтвердиться, но сама модель регрессии при проверке с помощью F-критерия оказывается значимой, что говорит о завышенной величине коэффициента множественной корреляции;

2) полученные оценки коэффициентов модели множественной регрессии могут быть неоправданно завышены или иметь неправильные знаки;

3) добавление или исключение из исходных данных одного-двух наблюдений оказывает сильное влияние на оценки коэффициентов модели;

4) мультиколлинеарные факторы, включённые в модель множественной регрессии, способны сделать её непригодной для дальнейшего применения.

Конкретных методов обнаружения мультиколлинеарности не существует, а принято применять ряд эмпирических приёмов. В большинстве случаев множественный регрессионный анализ начинается с рассмотрения корреляционной матрицы факторных переменных R или матрицы (ХТХ ).

Корреляционной матрицей факторных переменных называется симметричная относительно главной диагонали матрица линейных коэффициентов парной корреляции факторных переменных:

где rij – линейный коэффициент парной корреляции между i -м и j -ым факторными переменными,

На диагонали корреляционной матрицы находятся единицы, потому что коэффициент корреляции факторной переменной с самой собой равен единице.

При рассмотрении данной матрицы с целью выявления мультиколлинеарных факторов руководствуются следующими правилами:

1) если в корреляционной матрице факторных переменных присутствуют коэффициенты парной корреляции по абсолютной величине большие 0,8, то делают вывод, что в данной модели множественной регрессии существует мультиколлинеарность;

2) вычисляют собственные числа корреляционной матрицы факторных переменных ?min и ? max . Если ? min‹10-5 , то в модели регрессии присутствует мультиколлинеарность. Если отношение

то также делают вывод о наличии мультиколлинеарных факторных переменных;

3) вычисляют определитель корреляционной матрицы факторных переменных. Если его величина очень мала, то в модели регрессии присутствует мультиколлинеарность.

Данный текст является ознакомительным фрагментом. Из книги 100 великих чудес техники автора Мусский Сергей Анатольевич

Самолет дальнего радиолокационного обнаружения «Боинг» E-3 Это было 8 мая 1942 года в Коралловом море. «В 10 часов 55 минут радиолокационная установка обнаружила большую группу вражеских самолетов, подходившую с северо-востока. В 11 часов 13 минут наблюдатели «Лексингтона»

Из книги Энциклопедия безопасности автора Громов В И

1.3.5. Средства обнаружения и обезвреживания мин Обнаружение мин, отдельных фугасов, а также минированных участков производится:- по внешним признакам;- специальными приборами (миноискатели, щупы, стетоскопы);- собаками минорозыскной службы.*Демаскирующие признаки

Из книги Ответы на экзаменационные билеты по эконометрике автора Яковлева Ангелина Витальевна

38. Методы устранения мультиколлинеарности Если оцененную модель регрессии предполагается использовать для изучения экономических связей, то устранение мультиколлинеарных факторов является обязательным, потому что их наличие в модели может привести к неправильным

Из книги Судебная медицина и психиатрия: Шпаргалка автора Автор неизвестен

Из книги Гражданский кодекс РФ автора ГАРАНТ

Из книги "Шпионские штучки 2" или как сберечь свои секреты автора Андрианов Владимир Ильич

4.2. Специальные инструменты для обнаружения тайников 4.2.1. Поисковое зеркалоОсновным инструментом для обнаружения тайников является поисковое зеркало. Оно может быть маленьким, примерно как у зубного врача, может быть и гораздо больше. Зеркало (рис. 4.2) крепится на

Из книги Криминалистика. Шпаргалки автора Петренко Андрей Витальевич

27. Правила и классификация методов обнаружения следов 1. Первыми должны применяться неразрушающие методы. Необходимо начинать с микрометодов: не осталось ли каких-либо жировых следов, мельчайших клеточек отслоившейся кожи.2. Далее применяются неразрушающие методы,

Из книги Сила шаманов. Боевая и лечебная магия индейцев Дикого Запада автора Стукалин Юрий Викторович

38. Следы зубов: особенности обнаружения и их признаки Достаточно распространенными являются трассологические исследования следов зубов человека. Криминалистика изучает только следы зубов на материалах, поверхностях, еде; следы на теле человека - предмет изучения

Из книги Учебник выживания снайпера [«Стреляй редко, но метко!»] автора Федосеев Семён Леонидович

41. Особенности обнаружения, изъятия пуль и гильз В большинстве случаев гильза остается на месте преступления, способ обнаружения может быть: а) выборочный; б) сплошной.Применение выборочного способа для короткоствольного оружия таково:- устанавливается

Из книги Обман и провокации в малом и среднем бизнесе автора Гладкий Алексей Анатольевич

57. Средства для обнаружения микрообъектов Микрообъекты - это материальные объекты, связанные с событием преступления, поиск, обнаружение, изъятие и исследование которых ввиду их малых размеров и массы затруднительны или невозможны невооруженным глазом.Действия с

Из книги Базовая подготовка спецназа [Экстремальное выживание] автора Ардашев Алексей Николаевич

58. Особенности обнаружения микрообъектов Поиск и обнаружение микрообъектов должны осуществляться с соблюдением мер предосторожности. Все объекты сначала осматриваются без каких-либо перемещений; при изменении положения объекта под него помещают чистый лист кальки,

Из книги автора

Методы обнаружения колдунов «Есть много способов отличить колдуна от шамана, хотя большинство людей, обладающих мощной Силой, практикуют и то и другое, – говорили чирикауа апачи. – Человек мог жить рядом с колдуном и не знать об этом. Например, колдуньей могла быть его

Из книги автора

Из книги автора

Антижучок, или Средства обнаружения шпионской аппаратуры Как уже отмечалось, в настоящее время на российском рынке представлено великое множество самых разных шпионских устройств и разведывательной аппаратуры: скрытые микрофоны, жучки, системы скрытого

ВОПРОСЫ НА ЭКЗАМЕН ПО КУРСУ

«ЭКОНОМЕТРИКА (продвинутый уровень)»

1. Модель множественной регрессии. Виды моделей множественной регрессии.

2. Матричная форма записи и матричная формула оценки параметров множественной регрессии.

3. Оценка качества уравнения регрессии. Объясненная и необъясненная составляющие уравнения регрессии.

4. Коэффициент детерминации и коэффициент корреляции, их расчет в модели парной регрессии.

5. Выборочный множественный коэффициент детерминации и проверка его значимости по -критерию Фишера.

6. Проверка значимости множественного уравнения регрессии с помощью -критерия Фишера.

Значимость уравнения регрессии, т.е. соответствие эконометрической модели Y = a ˆ0 + a ˆ 1X + e фактическим (эмпирическим) данным, позволяет ус-

тановить, пригодно ли уравнение регрессии для практического использования (для анализа и прогноза), или нет.

Для проверки значимости уравнения используется F - критерий Фишера. Он вычисляется по фактическим данным как отношение несмещенной

дисперсии остаточной компоненты к дисперсии исходного ряда. Проверка значимости коэффициента детерминации осуществляется с помощью -критерия Фишера, расчетное значение которого находится по формуле:

,

где коэффициент множественной корреляции, – количество наблюдений, - количество переменных, – диагональный элемент матрицы .

Для проверки гипотезы по таблице определяют табличное значение

критерия Фишера F .

F(α ν1 ν2) – это максимально возможное значение критерия в зависимости от влияния случайных факторов при данных степенях свободы

ν = m1 , ν2 = n m −1, и уровне значимости α . Здесь m – количество аргументов в модели.

Уровень значимости α – вероятность отвергнуть правильную гипотезу, но при условии, что она верна (ошибка первого рода). Обычно α принимается равной 0,05 или 0,01.

Если F ф> F табл, то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если наоборт, то гипотеза H0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

7. Оценка значимости линейных коэффициентов корреляции. -критерий Стьюдента.

Для оценки статистической значимости коэффициентов регрессии и коэффициента корреляции рассчитывается t-критерий Стьюдента. Выдвигается гипотеза H 0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Наблюдаемые значения t-критерия рассчитываются по формулам:

, , ,

где – случайные ошибки параметров линейной регрессии и коэффициента корреляции.


Для линейной парной регрессии выполняется равенство , поэтому проверки гипотез о значимости коэффициента регрессии при факторе и коэффициента корреляции равносильны проверке гипотезы о статистической значимости уравнения регрессии в целом.

Вообще, случайные ошибки рассчитываются по формулам:

, , .

где – остаточная дисперсия на одну степень свободы:

.

Табличное (критическое) значение t-статистики находят по таблицам распределения t-Стьюдента при уровне значимости α = 0,05 и числе степеней свободы . Если t табл < t факт, то H 0 отклоняется, т.е. коэффициенты регрессии не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора.

8. Анализ влияния факторов на основе многофакторных регрессионных моделей: коэффициент эластичности ; бета-коэффициент и дельта-коэффициент .

9. Способы расчета параметров , , производственной функции Кобба-Дугласа.

10. Регрессионные уравнения с переменной структурой. Фиктивные переменные. Виды фиктивных переменных. Преимущества использования фиктивных переменных при построении регрессионных моделей.

11. Использование фиктивных переменных для исследования структурных изменений. Моделирование сезонности. Количество бинарных переменных при k градациях.

Понятие мультиколлинеарности. Методы обнаружения и устранения мультиколлинеарности.

Количественная оценка параметров уравнения регрессии предполагает выполнение условия линейной независимости между независимыми переменными. Однако на практике объясняющие переменные часто имеют высокую степень взаимосвязи между собой, что является нарушением указанного условия. Данное явление носит название мультиколлинеарности.

Термин коллинеарность (collinear ) обозначает линейную корреляцию между двумя независимыми переменными, а Мультиколлинеарность (multi-collinear ) – между более чем двумя независимыми переменными. Обыкновенно под мультиколлинеарностью понимают оба случая.

Таким образом, мультиколлинеарность означает наличие тесной линейной зависимости или сильной корреляции между двумя или более объясняющими (независимыми) переменными. Одной из задач эконометрии является выявление мультиколлинеарности между независимыми переменными.

Различают совершенную и несовершенную мультиколлинеарность. Совершенная мультиколлинеарность означает, что вариация одной из независимых переменных может быть полностью объяснена изменением другой (других) переменной.

Иначе, взаимосвязь между ними выражается линейной функцией

Графическая интерпретация данного случая:

Несовершенная мультиколлинеарность может быть определена как линейная функциональная связь между двумя или более независимыми переменными, которая настолько сильна, что может существенно затронуть оценки коэффициентов при переменных в модели.

Несовершенная мультиколлинеарность возникает тогда, когда две (или более) независимые переменные находятся между собой в линейной функциональной зависимости, описываемой уравнением

В отличие от ранее рассмотренного уравнения, данное включает величину стохастической ошибки . Это предполагает, что несмотря на то, что взаимосвязь между и может быть весьма сильной, она не настолько сильна, чтобы полностью объяснить изменение переменной изменением , т.е. существует некоторая необъяснимая вариация.

Графически данный случай представлен следующим образом:


В каких же случаях может возникнуть мультиколлинеарность? Их, по крайней мере, два.

1. Имеет место глобальная тенденция одновременного изменения экономических показателей. В качестве примера можно привести такие показатели как объем производства, доход, потребление, накопление, занятость, инвестиции и т.п., значения которых возрастают в период экономического роста и снижаются в период спада.

Одной из причин мультиколлинеарности является наличие тренда (тенденции) в динамике экономических показателей.

2. Использование лаговых значений переменных в экономических моделях.

В качестве примера можно рассматривать модели, в которых используются как величины дохода текущего периода, так и затраты на потребление предыдущего.

В целом при исследовании экономических процессов и явлений методами эконометрии очень трудно избежать зависимости между показателями.

Последствия мультиколлинеарности сводятся к

1. снижению точности оценивания, которая проявляется через

a. слишком большие ошибки некоторых оценок,

b. высокую степень корреляции между ошибками,

c. Резкое увеличение дисперсии оценок параметров. Данное проявление мультиколлинеарности может также отразиться на получении неожиданного знака при оценках параметров;

2. незначимости оценок параметров некоторых переменных модели благодаря, в первую очередь, наличию их взаимосвязи с другими переменными, а не из-за того, что они не влияют на зависимую переменную. То есть -статистика параметров модели не отвечает уровню значимости ( -критерий Стьюдента не выдерживает проверки на адекватность);

3. сильному повышению чувствительности оценок параметров к размерам совокупности наблюдений. То есть увеличение числа наблюдений существенно может повлиять на величины оценок параметров модели;

4. увеличению доверительных интервалов;

5. повышению чувствительности оценок к изменению спецификации модели (например, к добавлению в модель или исключению из модели переменных, даже несущественно влияющих).

Признаки мультиколлинеарности:

1. когда среди парных коэффициентов корреляции

между объясняющими (независимыми) переменными есть такие, уровень которых либо приближается, либо равен коэффициенту множественной корреляции.

Если в модели более двух независимых переменных, то необходимо более детальное исследование взаимосвязей между переменными. Данная процедура может быть осуществлена с помощью алгоритма Фаррара-Глобера;

2. когда определитель матрицы коэффициентов парной корреляции между независимыми переменными приближается к нулю:

если , то имеет место полная мультиколлинеарность,

если , то мультиколлинеарность отсутствует;

3. если в модели найдено маленькое значение параметра при высоком уровне коэффициента частной детерминации и при этом -критерий существенно отличается от нуля;

Еще одной серьезной проблемой при построении моделей множественной линейной регрессии по МНК является мультиколлинеарность − линейная взаимосвязь двух или нескольких объясняющих переменных. Причем, если объясняющие переменные связаны строгой функциональной зависимостью, то говорят о совершенной мультиколлинеарности . На практике можно столкнуться с очень высокой (или близкой к ней) мультиколлинеарностью − сильной корреляционной зависимостью между объясняющими переменными. Причины мультиколлинеарности и способы ее устранения анализируются ниже.

10.1. Суть мультиколлинеарности

Мультиколлинеарность может быть проблемой лишь в случае множественной регрессии. Ее суть можно представить на примере совершенной мультиколлинеарности.

Пусть уравнение регрессии имеет вид

Y = β 0 + β 1 X1 + β 2 X2 + ε .

Пусть также между объясняющими переменными существует

строгая линейная зависимость:

X2 = γ 0 + γ 1 X1 .

Подставив (10.2) в (10.1), получим:

Y = β 0 + β 1 X1 +β 2 (γ 0 + γ 1 X1 ) + ε

или Y = (β 0 + β 2 γ 0 ) + (β 1 + β 2 γ 1 )X1 + ε .

Обозначив β 0 + β 2 γ 0 = a, β 1 + β 2 γ 1 = b, получаем уравнение парной линейной регрессии:

Y = a + b X1 + ε .

По МНК нетрудно определить коэффициенты a и b. Тогда получим систему двух уравнений:

В 2 г 1

В систему (10.4) входят три неизвестные β 0 , β 1 , β 2 (коэффициенты γ 0 и γ 1 определены в (10.2)). Такая система в подавляющем числе случаев имеет бесконечно много решений. Таким образом, совершен-

ная мультиколлинеарность не позволяет однозначно определить коэффициенты регрессии уравнения (10.1) и разделить вклады объясняющих переменных X1 и X2 в их влиянии на зависимую переменную Y. В этом случае невозможно сделать обоснованные статистические выводы об этих коэффициентах. Следовательно, в случае мультиколлинеарности выводы по коэффициентам и по самому уравнению регрессии будут ненадежными.

Совершенная мультиколлинеарность является скорее теоретическим примером. Реальна же ситуация, когда между объясняющими переменными существует довольно сильная корреляционная зависимость, а не строгая функциональная. Такая зависимость называется

несовершенной мультиколлинеарностью. Она характеризуется высо-

ким коэффициентом корреляции ρ между соответствующими объясняющими переменными. Причем, если значение ρ по абсолютной величине близко к единице, то говорят о почти совершенной мультиколлинеарности. В любом случае мультиколлинеарность затрудняет разделение влияния объясняющих факторов на поведение зависимой переменной и делает оценки коэффициентов регрессии ненадежными. Данный вывод наглядно подтверждается с помощью диаграммы Вен-

на (рис. 10.1).

X 1 X 2

X 1 X 2

На рис. 10.1, а коррелированность между объясняющими переменными Х1 и Х2 отсутствует и влияние каждой из них на Y находит отражение в наложении кругов Х1 и Х2 на круг Y. По мере усиления линейной зависимости между Х1 и Х2 соответствующие круги все больше накладываются друг на друга. Заштрихованная область отра-

жает совпадающие части влияния Х1 и Х2 на Y. На рис. 10.1, г при совершенной мультиколлинеарности невозможно разграничить степени индивидуального влияния объясняющих переменных Х1 и Х2 на зависимую переменную Y.

10.2. Последствия мультиколлинеарности

Как известно, при выполнении определенных предпосылок МНК дает наилучшие линейные несмещенные оценки (BLUE-оценки). Причем свойство несмещенности и эффективности оценок остается в силе даже, если несколько коэффициентов регрессии оказываются статистически незначимыми. Однако несмещенность фактически означает лишь то, что при многократном повторении наблюдений (при постоянных объемах выборок) за исследуемыми величинами средние значения оценок стремятся к их истинным значениям. К сожалению, повторять наблюдения в одинаковых условиях в экономике практически невозможно. Поэтому это свойство ничего не гарантирует в каждом конкретном случае. Наименьшая возможная дисперсия вовсе не означает, что дисперсия оценок будет мала по сравнению с самими оценками. В ряде случаев такая дисперсия достаточно велика, чтобы оценки коэффициентов стали статистически незначимыми.

Обычно выделяются следующие последствия мультиколлинеарности:

1. Большие дисперсии (стандартные ошибки) оценок. Это затрудняет нахождение истинных значений определяемых величин и расширяет интервальные оценки, ухудшая их точность.

2. Уменьшаются t-статистики коэффициентов, что может привести к неоправданному выводу о существенности влияния соответствующей объясняющей переменной на зависимую переменную.

3. Оценки коэффициентов по МНК и их стандартные ошибки становятся очень чувствительными к малейшим изменениям данных, т. е. они становятся неустойчивыми.

4. Затрудняется определение вклада каждой из объясняющей переменных в объясняемую уравнением регрессии дисперсию зависимой переменной.

5. Возможно получение неверного знака у коэффициента регрессии. Причину последствий 3, 4 можно наглядно проиллюстрировать

на примере регрессии (10.1). Данную регрессию можно рассматривать

как проекцию вектора Y на плоскость векторов X1 и X2 . Если между этими векторами существует тесная линейная зависимость, то угол между векторами X1 и X2 мал. В силу этого операция проектирования становится неустойчивой: небольшое изменение в исходных данных может привести к существенному изменению оценок. На рис. 10.2 векторы Y и Y′ различаются незначительно, но в силу малого угла между X1 и X2 координаты векторов Y и Y′ не только значительно различаются по величине, но и по знаку.

Y ′

10.3. Определение мультиколлинеарности

Существует несколько признаков, по которым может быть установлено наличие мультиколлинеарности.

1. Коэффициент детерминации R 2 достаточно высок, но некоторые из коэффициентов регрессии статистически незначимы, т.е. они имеют низкие t-статистики.

2. Парная корреляция между малозначимыми объясняющими переменными достаточно высока.

Однако данный признак будет надежным лишь в случае двух объясняющих переменных. При большем их количестве более целесообразным является использование частных коэффициентов корреляции.

3. Высокие частные коэффициенты корреляции.

Частные коэффициенты корреляции определяют силу линейной зависимости между двумя переменными без учета влияния на них других переменных. Однако при изучении многомерных связей в ряде случаев парные коэффициенты корреляции могут давать совершенно неверные представления о характере связи между двумя переменными. Например, между двумя переменными Х и Y может быть высокий положительный коэффициент корреляции не потому, что одна из них

стимулирует изменение другой, а оттого, что обе эти переменные изменяются в одном направлении под влиянием других переменных, как учтенных в модели, так и, возможно, неучтенных. Поэтому имеется необходимость измерять действительную тесноту линейной связи между двумя переменными, очищенную от влияния на рассматриваемую пару переменных других факторов. Коэффициент корреляции между двумя переменными, очищенными от влияния других переменных, на-

зывается частным коэффициентом корреляции.

Например, при трех объясняющих переменных X1 , X2 , X3 частный коэффициент корреляции между X1 и X2 рассчитывается по формуле:

r 12.3

r 12 − r 13r 23

− r2 )(1

− r 2

Опираясь на данную формулу, нетрудно заметить, что частный коэффициент корреляции может существенно отличаться от “обычного” коэффициента корреляции r12 . Пусть, например, r12 = 0.5; r13 = 0.5; r23 = − 0.5. Тогда частный коэффициент корреляции r12.3 = 1, т. е. при относительно невысоком коэффициенте корреляции r12 частный коэффициент корреляции r12.3 указывает на высокую зависимость (коллинеарность) между переменными X1 и X2 . Нетрудно показать, что возможна и обратная ситуация. Другими словами, для более обоснованного вывода о корреляции между парами объясняющих переменных необходимо рассчитывать частные коэффициенты корреляции.

В общем случае выборочный частный коэффициент корреляции межу переменными Xi и Xj (1 ≤ i < j ≤ m), очищенный от влияния остальных (m − 2) объясняющих переменных, символически обозначается

r ij. 1 2 … (i − 1)(i+1)…(j − 1)(j+1)…m .

Приведем без доказательства формулу расчета данного коэффициента.

Пусть эмпирические парные коэффициенты корреляции между всевозможными парами объясняющих переменных Х1 , Х2 , …, Хm представлены в виде корреляционной матрицы

R = r

R3m .

... ...

−1

c mm

С * − обратная матрица к матрице R . Тогда

r ij. 1 2 … (i − 1)(i +1)…(j − 1)(j +1)…m =

− c * ij

c * ii c * jj

Из общей формулы (10.6) легко получаются частные формулы

(10.5) для трех переменных и (10.7) для четырех переменных:

r ij. kl =

r ij. k − r il. k r jl. k

(1− r2

)(1 − r2

il. k

jl. k

Пусть rj = ryj . 1 2 …(j − 1)(j +1)…m − частный коэффициент корреляции между зависимой переменной Y и переменной Хj , очищенный от

влияния всех остальных объясняющих переменных. Тогда rj 2 − част-

ный коэффициент детерминации, который определяет процент дисперсии переменной Y, объясняемый влиянием только переменной Хj .

Другими словами, rj 2 , j = 1, 2, …,m позволяет оценить вклад каждой переменной Xj на рассеивание переменной Y.

4. Сильная вспомогательная (дополнительная) регрессия.

Мультиколлинеарность может иметь место вследствие того, что какая-либо из объясняющих переменных является линейной (или близкой к линейной) комбинацией других объясняющих переменных. Для данного анализа строятся уравнения регрессии каждой из объясняющих переменных Xj , j = 1, 2, … , m на оставшиеся объясняющие переменные вспомогательные регрессии. Вычисляются соответствующие коэффициенты детерминации Rj 2 и рассчитывается их статистическая значимость на основе F-статистики

R2 j

n − m

− R 2 j

m − 1

Здесь n − число наблюдений, m − число объясняющих переменных в первоначальном уравнении регрессии. Статистика F имеет распределение Фишера с ν 1 = m − 1 и ν 2 = n − m степенями свободы. Данная формула аналогична формуле (6.36). Если коэффициент Rj 2 статистически незначим, то Xj не является линейной комбинацией других переменных и ее можно оставить в уравнении регрессии. В противном случае есть основания считать, что Xi существенно зависит от других объясняющих переменных, и имеет место мультиколлинеарность.

Существует и ряд других методов определения мультиколлинеарности, описание которых выходит за рамки данной книги.

10.4. Методы устранения мультиколлинеарности

Прежде чем указать основные методы устранения мультиколлинеарности, отметим, что в ряде случаев мультиколлинеарность не является таким уж серьезным злом, чтобы прилагать серьезные усилия по ее выявлению и устранению. Ответ на этот вопрос в основном зависит от целей исследования.

Если основная задача модели − прогноз будущих значений зависимой переменной, то при достаточно большом коэффициенте детерминации R2 (≥ 0.9) наличие мультиколлинеарности зачастую не сказывается на прогнозных качествах модели. Хотя это утверждение будет обоснованным лишь в том случае, что и в будущем между коррелированными переменными будут сохраняться те же отношения, что и ранее.

Если же целью исследования является определение степени влияния каждой из объясняющих переменных на зависимую переменную, то наличие мультиколлинеарности, приводящее к увеличению стандартных ошибок, скорее всего, исказит истинные зависимости между переменными. В этой ситуации мультиколлинеарность представляется серьезной проблемой.

Отметим, что единого метода устранения мультиколлинеарности, годного в любом случае, не существует. Это связано с тем, что причины и последствия мультиколлинеарности неоднозначны и во многом зависят от результатов выборки.

10.4.1. Исключение переменной(ых) из модели

Простейшим методом устранения мультиколлинеарности является исключение из модели одной или ряда коррелированных переменных.

Однако необходима определенная осмотрительность при применении данного метода. В этой ситуации возможны ошибки спецификации. Например, при исследовании спроса на некоторое благо в качестве объясняющих переменных можно использовать цену данного блага и цены заменителей данного блага, которые зачастую коррелируют друг с другом. Исключив из модели цены заменителей, мы, скорее всего, допустим ошибку спецификации. Вследствие этого возможно получение смещенных оценок и осуществление необоснованных выводов. Таким образом, в прикладных эконометрических моделях желательно не исключать объясняющие переменные до тех пор, пока коллинеарность не станет серьезной проблемой.

10.4.2. Получение дополнительных данных или новой выборки

Поскольку мультиколлинеарность напрямую зависит от выборки, то, возможно, при другой выборке мультиколлинеарности не будет либо она не будет столь серьезной.

Иногда для уменьшения мультиколлинеарности достаточно увеличить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных сокращает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серьезными издержками. Кроме того, данный подход может усилить автокорреляцию. Эти проблемы ограничивают возможность использования данного метода.

10.4.3. Изменение спецификации модели

В ряде случаев проблема мультиколлинеарности может быть решена изменением спецификации модели: либо изменением формы модели, либо добавлением объясняющих переменных, которые не учтены в первоначальной модели, но существенно влияющие на зависимую переменную. Если данный метод имеет основания, то его использование уменьшает сумму квадратов отклонений, тем самым сокращая стандартную ошибку регрессии. Это приводит к уменьшению стандартных ошибок коэффициентов.

10.4.4. Использование предварительной информации

о некоторых параметрах

Иногда при построении модели множественной регрессии можно воспользоваться некоторой предварительной информацией, в частно-

сти, известными значениями некоторых коэффициентов регрессии. Вполне вероятно, что значения коэффициентов, полученные для ка- ких-либо предварительных (обычно более простых) моделей, либо для аналогичной модели по ранее полученной выборке, могут быть использованы для разрабатываемой в данный момент модели.

Для иллюстрации приведем следующий пример. Строится регрессия вида (10.1). Предположим, что переменные X1 и X2 коррелированны. Для ранее построенной модели парной регрессии Y = γ 0 +

+ γ 1 X1 +υ был определен статистически значимый коэффициент γ 1 (для определенности пусть γ 1 = 0.8), связывающий Y с X1 . Если есть основания думать, что связь между Y и X1 останется неизменной, то можно положить γ 1 = β 1 = 0.8. Тогда (10.1) примет вид:

Y = β 0 + 0.8X1 + β 2 X2 + ε .

Y – 0.8X1 = β 0 + β 2 X2 + ε .

Уравнение (10.9) фактически является уравнением парной регрессии, для которого проблема мультиколлинеарности не существует.

Ограниченность использования данного метода обусловлена тем, что, во-первых, получение предварительной информации зачастую затруднительно, а во-вторых, вероятность того, что выделенный коэффициент регрессии будет одним и тем же для различных моделей, невысока.

10.4.5. Преобразование переменных

В ряде случаев минимизировать либо вообще устранить проблему мультиколлинеарности можно с помощью преобразования переменных.

Например, пусть эмпирическое уравнение регрессии имеет вид

Y = b0 + b1 X1 + b2 X2 ,

причем X1 и X2 − коррелированные переменные. В этой ситуации можно попытаться определять регрессионные зависимости относительных величин

1 X 1

1 X 2

Вполне вероятно, что в моделях, аналогичных (10.11), проблема мультиколлинеарности будет отсутствовать.

Возможны и другие преобразования, близкие по своей сути к вышеописанным. Например, если в уравнении рассматриваются взаимосвязи номинальных экономических показателей, то для снижения мультиколлинеарности можно попытаться перейти к реальным показателям и т. п.

Вопросы для самопроверки

1. Объясните значение терминов “коллинеарность” и “мультиколлинеарность”.

2. В чем различие между совершенной и несовершенной мультиколлинеарностью?

3. Каковы основные последствия мультиколлинеарности?

4. Как можно обнаружить мультиколлинеарность?

5. Как оценивается коррелированность между двумя объясняющими переменными?

6. Перечислите основные методы устранения мультиколлинеарности.

7. Какие из следующих утверждений истинны, ложны или не определены? Ответ поясните.

а) При наличии высокой мультиколлинеарности невозможно оценить статистическую значимость коэффициентов регрессии при коррелированных переменных.

б) Наличие мультиколлинеарности не является препятствием для получения по МНК BLUE-оценок.

в) Мультиколлинеарность не является существенной проблемой, если основная задача построенной регрессионной модели состоит в прогнозировании будущих значений зависимой переменной.

г) Высокие значения коэффициентов парной корреляции между объясняю-

щими переменными не всегда являются признаками мультиколлинеарности. д) Так как Х2 является строгой функцией от Х, то при использовании обеих переменных в качестве объясняющих возникает проблема мультиколлинеарности.

е) При наличии мультиколлинеарности оценки коэффициентов остаются не-

смещенными, но их t-статистики будут слишком низкими.

ж) Коэффициент детерминации R2 не может быть статистически значимым, если все коэффициенты регрессии статистически незначимы (имеют низкие t- статистики).

з) Мультиколлинеарность не приводит к получению смещенных оценок коэффициентов, но ведет к получению смещенных оценок для дисперсий коэф-

фициентов.

и) В регрессионной модели Y = β 0 + β 1 X1 + β 2 X2 + ε наличие мультиколлинеарности можно обнаружить, если вычислить коэффициент корреляции между Х1 и Х2 .

8. Пусть по МНК оценивается уравнение регрессии Y = β 0 + β 1 X1 + β 2 X2 + ε . Для большинства выборок наблюдается высокая коррелированность между

X1 и X2 . Пусть коррелированности между этими переменными не наблюдается. Коэффициенты регрессии оцениваются по данной выборке. Будут ли в этом случае оценки несмещенными? Будут ли несмещенными оценки дисперсий найденных эмпирических коэффициентов регрессии?

9. Объясните логику отбрасывания объясняющей переменной с целью устранения проблемы мультиколлинеарности.

10. Пусть в уравнении регрессии Y = β 0 + β 1 X1 + β 2 X2 + ε переменные X1 и X2

сильно коррелированны. Строится уравнение регрессии X2 на X1 , случайные отклонения от которой обозначим через υ . Строится новое уравнение регрес-

сии с зависимой переменной Y и двумя объясняющими переменными − Х2 и υ . Будет ли решена таким образом проблема мультиколлинеарности?

Упражнения и задачи

1. Имеется выборка из 10 наблюдений за переменными X 1 , X2 , Y:

а) Можно ли по этим данным по МНК оценить коэффициенты регрессии с двумя объясняющими переменными. Ответ поясните.

б) В случае отрицательного ответа на вопрос а) предложите преобразования, которые позволят оценить коэффициенты регрессии.

2. По выборке n = 50 для X 1 , Х2 , X3 построена следующая корреляционная матрица

− 0.35

− 0.35

эффициентов корреляции r12.3 , r23.1 , r13.2 .

б) При рассмотрении какой регрессии будет иметь место мультиколлинеарность?

3. После оценки уравнения регрессии Y = b 0 + b1 X1 + b2 X2 + e был рассчитан коэффициент корреляции rx 1 x 2 = 0. Были рассчитаны уравнения парной

регрессии: Y = с0 + с1 X1 + υ ; Y = d0 + d2 X2 + ϖ .

Можно ли ожидать, что будут выполняться следующие соотношения:

а) b1 = с1 ; b2 = d2 ;

б) b0 равен либо с0 , либо d0 , либо некоторой их комбинации;

в) S(b1 ) = S(с1 ); S(b2 ) = S(d2 ) .

а) Постройте уравнение регрессии INV = b0 + b1 GNP + b2 CONS + e. б) Оцените качество построенного уравнения.

в) Можно ли было ожидать при построении данного уравнения наличия мультиколлинеарности? Ответ поясните.

г) Имеет ли место мультиколлинеарность для построенного вами уравнения? Как вы это определили?

д) Постройте уравнения регрессии INV на GNP и INV на CONS. Какие выводы можно сделать по построенным моделям?

е) Постройте уравнение регрессии CONS на GNP. Что обнаруживает построенная модель?

ж) Как можно решить проблему мультиколлинеарности для первоначальной модели?

5. Пусть исследуется вопрос о среднем спросе на кофе AQ (в граммах на одно-

го человека). В качестве объясняющих переменных предполагается использовать следующие переменные: PC − индекс цен на кофе, lnYD − логарифм от реального среднедушевого дохода, POP − численность населения, PT − индекс цен на чай. Можно ли априори предвидеть, будут ли в этом случае

значимыми все t-статистики и будет ли высоким коэффициент детерминации R2 ? Какими будут ваши предложения по уточнению состава объясняющих переменных.

6. Пусть рассматривается следующая модель:

CONSt = β 0 + β 1 GNPt + β 2 GNPt − 1 +β 3 (GNPt − GNPt − 1 ) + ε ,

где CONSt − объем потребления в момент времени t; GNPt , GNPt − 1 − объемы ВНП в моменты времени t и t− 1 соответственно.

а) Что утверждается в данной модели?

б) Можно ли по МНК оценить все коэффициенты указанного уравнения регрессии?

в) Какой из коэффициентов и вследствие чего нельзя оценить?

г) Решит ли проблему оценки исключение из модели переменной GNPt или переменной GNPt − 1 ? Ответ поясните.

  • 4. Статистическое оценивание параметров плр по методу наименьших квадратов. Свойства мнк – оценок
  • Свойства мнк-оценок:
  • 5. Проверка качества множественной линейной регрессии: значимость параметров, доверительные интервалы, адекватность модели. Прогнозирование.
  • 6. Множественная линейная регрессия (млр). Классические предположения. Мнк-оценка параметров модели.
  • 7. Свойства мнк-оценок множественной линейной регрессии. Теорема Гаусса- Маркова.
  • 8. Проверка качества множественной линейной регрессии: значимость параметров, доверительные интервалы, адекватность модели. Прогнозирование.
  • 5. Коэф. Детерминации
  • Прогнозирование по модели множественной линейной регрессии
  • 9. Спецификация эконометрической модели: способы и диагностика отбора экзогенных переменных. Тесты Рамсея и Амемья.
  • Критерий Рамсея (Ramsey):
  • 10. Спецификация эконометрической модели: выбор формы зависимости нелинейной модели
  • Принципы спецификаций
  • 11. Проблема наличия мультиколлинеарности. Последствия наличия и диагностики мультиколлинеарности.
  • Методы диагноза мультиколлинеарности:
  • 12. Методы устранения мультиколлинеарности. Метод главных компонент. Гребневая регрессия.
  • 13. Проблемы гетероскедастичности модели. Критерии ее диагностики.
  • 1. Критерий Парка (Park).
  • 2. Критерий Голдфелда-Кандта (Goldfeld-Quandt).
  • 3. Критерий Бриша-Пагана (Breusch-Pagan).
  • 4. Критерий Вайта (White).
  • 14. Обобщенный мнк (омнк). Свойства оценок млр по омнк. Взвешенный мнк в задаче оценивания параметров модели. Свойства оценок по взвешенному мнк.
  • Вопрос 15. Проблема автокорреляции остатков модели. Последствия автокорреляции при использовании модели.
  • Причины автокорреляции остатков
  • Последствия автокорреляции:
  • 16. Критерий диагностики автокорреляции Дарбина-Уотсона
  • 17.Методы устранения автокорреляции. Процедуры оценивания Кохрейна-Оркатта и Хильдрета-Лу
  • 18. Модели с распределенными лагами: структура лагов по Койку: Частные случаи (модель с неполной корректировкой и адаптивных ожиданий)
  • 19 Модели с распределенными лагами: линейно-арифметическая структура лагов и полиномиальная структура лагов по Алмон
  • 20. Тест h-Дарбина и множественный тест Лагранжа проверки автокорреляции в лаговых моделях
  • 21. Понятие временного ряда (вр). Модель вр, основные задачи анализа вр. Методы сглаживания вр (скользящего среднего, экспоненциального сглаживания, последовательных разностей)
  • 22 Стационарность временного ряда (вр). Характеристики корреляции уровней вр.
  • 23 Стационарные модели временных рядов: авторегрессии, скользящего среднего, арсс
  • 24. Нестационарная модель арисс. Оценка параметров модели.
  • 28. Прогнозирование временных рядов. Показатели точности прогнозов.
  • 30. Тест Чоу диагностики включения фиктивных переменных в эконометрическую модель.
  • 32. Системы одновременных эконометрических уравнений (соу). Структурная и приведенная форма соу (графическое и матричное представление).
  • 33. Проблемы идентификации систем одновременных уравнений (соу). Идентифицируемость уравнений соу (порядковый и ранговый критерии)
  • 34. Методы оценивания систем одновременных уравнений: косвенный мнк, двухшаговый мнк. Применимость и свойства оценок
  • 35. Современное состояние эконометрики. Примеры больших эконометрических моделей
  • 11. Проблема наличия мультиколлинеарности. Последствия наличия и диагностики мультиколлинеарности.

    Если имеется линейная связь экзогенных переменных , например , то МНК-оценки не будут существовать, т.к. не существует обратная к матрице, которая будет вырожденной. Такая ситуация в эконометрике носит название проблемымультиколлинеарности.

    Причины мультиколлинеарности:

    неправильная спецификация модели

    небрежное проведение сбора статданных (использование повторных наблюдений).

    Различают явную и неявную мультиколлинеарность.

    Явная – известна точная линейная зависимость между переменными модели.

    Например, если в модель инвестиционного процесса включить номинальную и реальную процентные ставки, т.е.

    где известна зависимость реальной и номинальной ставок и темпа инфляции

    то имеет место явная мультиколлинеарность.

    Неявная возникает, когда существует стохастическая (неопределенная, случайная) линейная зависимость между экзогенными переменными.

    преобладает неявная, ее наличие характеризуют 6 признаков :

    1. МНК-оценки параметров модели теряют свойства несмещенности .

    2. Дисперсия МНК-оценок возрастает:

    Вследствие того, что, коэффициент корреляции, тогда, что влечет

    3. Происходит уменьшение t -статистик, являющихся индикаторами значимости параметров:

    4. Коэффициент детерминации уже не является мерой адекватности модели, так как низкие значения t -статистик влекут недоверие к подобранной модели зависимости.

    5. Оценки параметров при неколлинеарных экзогенных переменных становятся очень чувствительными к изменению данных.

    6. Оценки параметров при неколлинеарных экзогенных переменных становятся незначимыми.

    Методы диагноза мультиколлинеарности:

    Шаг 1. В модели (исходной) множественной линейной регрессии переберем все подмодели, в которых какая-либо экзогенная переменная становится эндогенной, т.е.

    Шаг 2. Вычисляем коэффициенты детерминации всех полученных моделей , на основе которых рассчитаем так называемые инфляционные факторы:

    Если , то делают вывод о существовании мультиколлинеарности.

    а) в модели не изменяют никакую структуру, а, применяя компьютерный МНК, анализируют наличие проблемы мультиколлинеарности по визуальным методам.

    б) улучшают спецификацию модели, устраняя из исходной модели коллинеарные экзогенные переменные.

    в) увеличивают объем статистических данных.

    г) объединяют коллинеарные переменные и включают в модель общую экзогенную переменную.

    12. Методы устранения мультиколлинеарности. Метод главных компонент. Гребневая регрессия.

    Если основная задача модели − прогноз будущих значений зависимой переменной, то при достаточно большом коэффициенте детерминации R 2 (≥ 0.9) наличие мультиколлинеарности зачастую не сказывается на прогнозных качествах модели.

    Если целью исследования является определение степени влияния каждой из объясняющих переменных на зависимую переменную, то наличие мультиколлинеарности исказит истинные зависимости между переменными. В этой ситуации мультиколлинеарность представляется серьезной проблемой.

    Отметим, что единого метода устранения мультиколлинеарности, годного в любом случае, не существует. Это связано с тем, что причины и последствия мультиколлинеарности неоднозначны и во многом зависят от результатов выборки.

    МЕТОДЫ:

    Исключение переменной(ых) из модели

    Например, при исследовании спроса на некоторое благо в качестве объясняющих переменных можно использовать цену данного блага и цены заменителей данного блага, которые зачастую коррелируют друг с другом. Исключив из модели цены заменителей, мы, скорее всего, допустим ошибку спецификации. Вследствие этого возможно получение смещенных оценок и осуществление необоснованных выводов. в прикладных эконометрических моделях желательно не исключать объясняющие переменные до тех пор, пока коллинеарность не станет серьезной проблемой.

    Получение дополнительных данных или новой выборки

    Иногда достаточно увеличить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных сокращает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серьезными издержками. Кроме того, данный подход может усилить автокорреляцию. Эти проблемы ограничивают возможность использования данного метода.

    Изменение спецификации модели

    В ряде случаев проблема мультиколлинеарности может быть решена изменением спецификации модели: либо изменением формы модели, либо добавлением объясняющих переменных, которые не учтены в первоначальной модели, но существенно влияющие на зависимую переменную.

    Использование предварительной информации о некоторых параметрах

    Иногда при построении модели множественной регрессии можно воспользоваться некоторой предварительной информацией, в частности, известными значениями некоторых коэффициентов регрессии. Вполне вероятно, что значения коэффициентов, полученные для каких-либо предварительных (обычно более простых) моделей, либо для аналогичной модели по ранее полученной выборке, могут быть использованы для разрабатываемой в данный момент модели.

    Для иллюстрации приведем следующий пример. Строится регрессия. Предположим, что переменные X1 и X2 коррелированы. Для ранее построенной модели парной регрессии Y = γ0 + γ1X1+υ был определен статистически значимый коэффициент γ1 (для определенности пусть γ1 = 0.8), связывающий Y с X1. Если есть основания думать, что связь между Y и X1 останется неизменной, то можно положить γ1 = β1 = 0.8. Тогда:

    Y = β0 + 0.8X1 + β2X2 + ε. ⇒ Y – 0.8X1 = β0 + β2X2 + ε.

    Уравнение фактически является уравнением парной регрессии, для которого проблема мультиколлинеарности не существует.

    Ограниченность использования данного метода обусловлена:

      получение предварительной информации зачастую затруднительно,

      вероятность того, что выделенный коэффициент регрессии будет одним и тем же для различных моделей, не высока.

    Преобразование переменных

    В ряде случаев минимизировать либо вообще устранить проблему мультиколлинеарности можно с помощью преобразования переменных.

    Например, пусть эмпирическое уравнение регрессии имеет вид Y = b0 + b1X1 + b2X2

    причем X1 и X2 − коррелированные переменные. В этой ситуации можно попытаться определять регрессионные зависимости относительных величин. Вполне вероятно, что в аналогичных моделях, проблема мультиколлинеарности будет отсутствовать.

    Метод главных компонент является одним из основных методов исключения переменных из модели множественной регрессии.

    Данный метод используется для исключения или уменьшения мультиколлинеарности факторных переменных модели регрессии. Суть метода : сокращение числа факторных переменных до наиболее существенно влияющих факторов . Это достигается с помощью линейного преобразования всех факторных переменных xi (i=0,…,n) в новые переменные, называемые главными компонентами, т. е. осуществляется переход от матрицы факторных переменных Х к матрице главных компонент F. При этом выдвигается требование, чтобы выделению первой главной компоненты соответствовал максимум общей дисперсии всех факторных переменных xi (i=0,…,n), второй компоненте – максимум оставшейся дисперсии, после того как влияние первой главной компоненты исключается и т. д.

    Если ни одну из факторных переменных, включённых в модель множественной регрессии, исключить нельзя, то применяют один из основных смещённых методов оценки коэффициентов модели регрессии – гребневую регрессию или ридж (ridge). При использовании метода гребневой регрессии ко всем диагональным элементам матрицы (ХТХ) добавляется небольшое число τ: 10-6 ‹ τ ‹ 0.1. Оценивание неизвестных параметров модели множественной регрессии осуществляется по формуле:

    где ln – единичная матрица.

    1.В модели с двумя переменными одним из признаков мультиколлинеарности является близкое к единице значение коэффициента парной корреляции . Если значение хотя бы одного из коэффициентов парной корреляции больше, чем 0,8, то мультиколлинеарность представляет собой серьезную проблему.

    Однако в модели с числом независимых переменных больше двух, парный коэффициент корреляции может принимать небольшое значение даже в случае наличия мультиколлинеарности. В этом случае лучше рассматривать частные коэффициенты корреляции.

    2. Для проверки мультиколлинеарности можно рассмотреть детерминант матрицы коэффициентов парной корреляции |r|. Этот детерминант называется детерминантом корреляции |r| ∈(0; 1). Если |r| = 0, то существует полная мультиколлинеарность. Если |r|=1, то мультиколлинеарность отсутствует. Чем ближе |r| к нулю, тем более вероятно наличие мультиколлинеарности.

    3. Если оценки имеют большие стандартные ошибки, невысокую значимость, но модель в целом значима (имеет высокий коэффициент детерминации), то это свидетельствует о наличие мультиколлинеарности.

    4. Если введение в модель новой независимой переменной приводит к существенному изменению оценок параметров и небольшому изменению коэффициента детерминации, то новая переменная находится в линейной зависимости от остальных переменных

    65. Фиктивные переменные: определение, назначение, типы, смысл названий.

    Фиктивные переменные – это переменные с дискретным множеством значений, которые количественным образом описывают качественные признаки. В эконометрических моделях обычно используются фиктивные переменные бинарного типа “0-1”.

    Фиктивные переменные необходимы для оценки качественных признаков на эндогенную переменную. Например, при оценке спроса на некоторый товар мы построили регрессионную модель, регрессорами в которой в которой были количественные переменные – цены и дохода потребителя. Одним из способов уточнения данной модели может послужить включение таких качественных признаков, как вкус потребителя, возраст, национальные особенности, сезонность и т.д. Эти показатели нельзя представить в численном виде. Поэтому возникает задача отражения их влияния на значения эндогенной переменной, которая решается как раз при помощи введения фиктивных переменных.

    В общем случае, когда качественный признак имеет более двух значений, вводится несколько бинарных переменных. При использовании нескольких бинарных переменных необходимо исключить линейную зависимость между переменными, так как в противном случае, при оценке параметров, это приведет к совершенной мультиколлинеарности. Поэтому применяется следующее правило: если качественная переменная имеет k альтернативных значений, то при моделировании используются только (k-1) фиктивная переменная.

    В регрессионных моделях применяются фиктивные переменные двух типов:

    1. Фиктивные переменные сдвига

    2. Фиктивные переменные наклона – это переменная, которая изменяет наклон линии регрессии. При помощи таких фиктивных переменных можно построить кусочно-линейные модели, которые позволяют учесть структурные изменения в экономических процессах (например, введение новых правовых или налоговых ограничений, изменение политической ситуации и т.д.) Такие переменные применяются, когда изменение качественного признака приводит не к параллельному сдвигу графика регрессии, а к изменению его наклона. Собственно поэтому такие фиктивные переменные и называются переменными наклона.

    66. Фиктивная переменная сдвига: спецификация регрессионной модели с фиктивной переменной сдвига.

    Фиктивные переменные сдвига – эти переменные применяются в динамических моделях, когда с определенного момента времени начинает действовать какой-либо качественный фактор (например, при рассмотрении производительности завода до забастовки рабочих и во время нее). Эти переменные применяются, когда изменение качественного признака приводит к параллельному сдвигу графика регрессионной модели, поэтому они и называются переменными сдвига.

    Спецификация парной регрессионной модели с фиктивной перемен­ной сдвига имеет вид:

    Где α, β, δ – параметры модели; – значение регрессора в наблюдении t;

    Фиктивная переменная;

    δ – параметр при фиктивной переменной.

    Значение фиктивной переменной dt=0 называется базовым (сравнительным). Базовое значение может либо определяться целями исследования, либо выбираться произвольно. Если заменить базовое значение переменной, то суть модели не изменится, изменится знак параметра δ на противоположный.

    Рассмотрим парную регрессионную модель с фиктивной переменной сдвига на примере.

    Пусть на продажи мороженого влияет наличие рекламы на фургоне у продавца. При помощи уравнения с фиктивными переменными можно, использую одно уравнение регрессии, получить результат как для продавцов с рекламой, так и для продавцов без рекламы.

    Пусть первоначальная модель описывается спецификацией:

    Где n – количество продавцов мороженого, – количество продаж для t-го продавца, – значение количественного регрессора для t-го продавца

    Введем фиктивную переменную сдвига